GCE

Physics A

Advanced Subsidiary GCE G482/01

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question			Expected Answers	M	Additional Guidance
1					
	a		current moves from + to - (of battery in circuit) and electrons move from - to +	B1	
	b		$\mathrm{C} \mathrm{s}^{-1} \vee \Omega^{-1}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2 correct 2 marks; 1 correct 1 mark, withhold a mark for each additional answer given
	C	i	statement of Kirchhoff's first law or conservation of charge	B1	accept wires are in series or current is the same (at every point) in a series circuit/AW not current in = current out
		ii1	$\mathrm{R}=\rho \mathrm{l} / \mathrm{A}$ calculation to justify $\mathrm{R}=72 \Omega$	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$	accept R a I and R a 1/A or similar method/argument must be convincing accept $3 / 1 / 2 \times 12$ but not $3 \times 2 \times 12$
		ii2	$\begin{aligned} & \mathrm{R}=\text { sum of } \mathrm{Rs} \\ & \mathrm{R}=84 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	accept Rs in series ecf (c)(ii)1
		iii	$\begin{aligned} & \text { select I }=\text { nAev } \\ & v=4.0 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	allow \vee a 1/A accept $4 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ no SF error
			Total question 1	10	

Question			Expected Answers	M	Additional Guidance
2					
	a	i	When connected/using/AW to the 230 V supply the power/energy per second from supply/output/dissipated/AW is 25 W	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	accept when working normally/AW not 230 V (going) through/into lamp/AW accept transferred from electrical (into other) form(s) is 25 W
		ii	$\begin{aligned} & 25=230^{2} / \mathrm{R} \\ & \mathrm{R}=2100 \Omega \text { or } 2.1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { accept } I=25 / 230=0.11 \mathrm{~A} \\ & R=230 / 0.11=2100 \Omega(2116 \Omega) \end{aligned}$
		iii	Using the equation in the form $\mathrm{P}=\mathrm{VI}$, for larger P need larger I so 60 W	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$, for larger P need smaller R so larger I; do not allow any argument using 880 Ω unless this value is calculated here
		iv1	$\begin{aligned} & 1 / R=1 / 2100+1 / 880 \\ & R=620 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	substitution into formula for Rs in parallel ecf (a)(ii)
		iv2	$\begin{aligned} & I=230 / 620 \\ & I=0.37(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ecf (a)(iv)1 using 1/R gives 143 kA accept total $\mathrm{P}=85 \mathrm{~W}$ so $\mathrm{I}=85 / 230 ;=0.37$ (A)
	b		the resistivity/resistance (of a metal) increases with temperature or R is greater when hot(ter) at $6 \mathrm{~V} /$ low I little heating effect or at $230 \mathrm{~V} /$ high I large heating effect	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$	ora less when colder QWC mark: explanation linked to observations
	C	i	(a unit of) energy equal to 3.6 MJ or 1 kW for $1 \mathrm{~h} / \mathrm{AW}$	B1	eg 1000 W for 3600 s or similar
		ii	$\begin{aligned} & 0.06 \times 8=0.48(\mathrm{kWh}) \text { or } 60 \times 8=480(\mathrm{~Wh}) \\ & 0.48 \times 21=10(.1) \mathrm{p} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	no marks for using s instead of h POT error e.g. 100 or 10000 p
			Total question 2	15	

Question			Expected Answers	M	Additional Guidance
3					
	a	i	correct symbols (variable) R in series with ammeter and cell voltmeter correctly in parallel with variable R	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	variable R and voltmeter needed ecf variable resistor symbol accept voltmeter in parallel with cell
		ii1	V decreases as I increases caused by R decreasing V is large when R is large or V is small when R is small $V=$ e.m.f. when R is infinite/open circuit or $V=0$ when $R=0$ 3.14Ω at $A ; 0.88 \Omega$ at B and 0.19Ω at C any correct reference to internal resistance of cell	B1 B1 B1	max 3 marks with 2 marks for first two or second two marking points or three numbers and 1 mark for reference to r allow as R increases (decreases) V increases (decreases) for 1 mark but not as V increases R increases; award $0 / 2$ if reason given as $\mathrm{V} \alpha \mathrm{R}$ or I is constant
		ii2	at A I is small or V is much bigger than I/AW at $\mathrm{C} V$ is small or I is much bigger than V/AW product of V. and I is largest when the values of both quantities are about equal/half of the maximum value	$\begin{array}{\|l\|} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \hline \mathrm{~B} 1 \\ \hline \end{array}$	accept numerical answers, e.g. 0.39 W at A , 0.33 W at C 0.56 W at B for 2 marks comment on values for third mark
		ii3	1.4 (V)	B1	
		ii4	appreciating \vee against I is a straight line graph with gradient $-r$; giving $r=0.88 \pm 0.02 \Omega$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	accept using $\mathrm{V}=\mathrm{E}-$ Ir not just quoting formula allow 0.8 ± 0.02 for calculation using any point on line N.B. can also have ecf(ii)3
	b	i	intensity is the (incident) energy per unit area per second	B1	accept power per unit area or power per m^{2} or (total) power/(surface) area
		ii	$\begin{aligned} & \text { efficiency = power out/power in } \\ & =0.25 /\left(800 \times 2.5 \times 10^{-3}\right) \\ & =0.125 \text { or } 12.5 \% \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{C} 1 \\ \mathrm{C} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$	not energy out/energy in accept 13\%
			Total question 3	16	

Question			Expected Answers	M	Additional Guidance
4					
	a		resistance decreases with increase in light intensity	B1	ora
	b	i	3.0 (V)	B1	accept 3 V , no SF error
		ii	$\begin{aligned} & 3.0=I .1 .2 \times 10^{3} \text { giving } \\ & I=2.5 \times 10^{-3} \mathrm{~A} \\ & 6.0 / 2.510^{-3}=\mathrm{R}=2400 \Omega \quad 2.4 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept $6=(R / R+1.2 k) .9$ $2 R+2.4 k=3 R$ or similar $\mathrm{R}=2.4 \mathrm{k} \quad ;$ give 2 with POT error accept ratio of resistors $6 / 3 \times 1.2$ good candidates can do this by inspection with no working - full marks allow 2400 written on answer line rather than 2.4 if 2400Ω within body of text
		iii	49 or $50\left(\mathrm{~W} \mathrm{~m}^{-2}\right)$	B1	ecf (b)(ii) if on R within graph range
	C	i	2.2 (kS)	B1	allow any value from 2.1 to 2.2
		ii	large(r) changes in R at low light intensities relating change in R to change in V	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow greater sensitivity of LDR at low light or steeper gradient/AW e.g. bigger change in I so in V or use of $V=R /(R+1200) V_{s}$ or bigger change in V ratio across $R s$
	d		V across $1.2 \mathrm{k} \Omega$ falls so V across LDR rises because ratio of Rs changes in favour of LDR/ potential divider argument or total V is constant	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	alternative I increases because total R is less so V across LDR rises do not award B marks where there is CON e.g. V across 1.2 k rises so V across LDR rises
	e		continuous record for very long time scale of observation can record very short time scale signals (at intervals) automatic recording/remote sensing data can be fed directly to computer (for analysis)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	allow any two sensible suggestions which fall within the 4 categories listed for 2 marks
			Total question 4	14	

Question			Expected Answers	M	Additional Guidance
5					
	a	i	travel through a vacuum	B1	allow travel at c (in a vacuum)
	b	ii	A gamma; C uv; F microwave	B3	allow 1 mark for A radio; C ir; F X-ray
	C	i	$\begin{aligned} & 3.0 \times 10^{8}=1.0 \times 10^{9} \lambda \\ & \lambda=0.30 \mathrm{~m} \\ & \text { aerial length }=\lambda / 2=0.15 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ A1	allow 0.3 no SF error ecf (c)(i)
		iii	emitted wave is (plane) polarised detecting aerial will receive weaker signal/ $\cos \theta$ component when it is rotated (through angle θ)/AW signal falls to zero at 90° and then rises to max again at 180°	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \mathrm{B} 1 \end{aligned}$	allow max signal initially/at 0° max 3 marks from 4 marking points
	d	i	UV-A causes tanning or skin ageing ; most of (99\%) uv light; 400-315 nm UV-B causes damage or sunburn or skin cancer; 315-260 nm UV-C is filtered out by atmosphere/ozone layer; 260-100 nm	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \mathrm{B} 1 \\ & \hline \end{aligned}$	accept values within ranges with tolerance of 20 nm allow $\lambda_{A}>\lambda_{B}>\lambda_{C}$ for 1 mark max 3 marks from 7 marking points
		ii	filters out/blocks/reflects/absorbs UV(-B)	B1	allow chemicals prevent sunburn/skin cancer not stops UV penetrating skin
	e		energy of the infra-red photon is less than the work function of the metal surface	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	accept frequency and threshold frequency or wavelength and threshold wavelength used correctly in place of energy and work function 1 mark only: energy of the uv photon greater than work function with no mention of ir
			Total question 5	16	

Question			Expected Answers	M	Additional Guidance
6					
	a		oscillation/vibration of particles/medium in direction of travel of the wave example: sound wave, etc. oscillation/vibration of particles/medium (in the plane) at right angles to direction of travel of the wave example: surface water waves, string, electromagnetic, etc	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow direction of energy transfer of the wave not direction of wave motion allow direction of energy transfer of the wave allow RE mark for weaker descriptions with same omissions as in longitudinal wave
	b		the incident wave is reflected at the end of the pipe reflected wave interferes/superposes with the incident wave to produce (a resultant wave with) nodes and/or antinodes	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	QWC mark accept resultant wave with no energy transfer
	C	i	at 0 oscillation with max amplitude along tube at 0.2 m (oscillation along tube with) smaller amplitude at 0.6 m no motion/node	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	not displacement (penalise only once) all 4 correct for 2 marks; 2 correct for 1 mark
		ii	oscillation at 3 times the frequency of c(i) at 0 (oscillation with) max amplitude (along tube)/antinode at 0.2 m no motion/node at 0.4 m motion as at 0 (but in antiphase/opposite direction)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	3 correct for 2 marks; 2 correct for 1 mark
	d	i	$\lambda / 2$ sketch with zero at 0.3 m	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	accept 1 or 2 lines, solid or dotted
		ii	$2 \mathrm{f}_{0}$	B1	no ecf from d(i)
			Total question 6	14	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

